Lab 6 Confidence Intervals and T-Tests

Cindy J. Pang

BIOSTAT 100A Summer Session C 2024

August 29, 2024

Normal Distribution and CLT

- Central Limit Theorem: Sampling distribution of \overline{x} is approximately normal if n is sufficiently large $n \rightarrow \infty \Rightarrow \overline{\chi} \sim Normal$ freq freq $\xrightarrow{n=10}{n=25}$
- When is a sample "sufficiently large"? $n \ge 30$
- When do we assume normality? (1) n≥30 by CLT (large cample) (2) if n is small (n<30), assume we are sampling from a population that is normal
 Inference: (1) Estimation vs. (2) Hypothesis Testing placing reasonable value (c) on a chosen pop'n parameter (i.e. confidence Intervals) whether its reasonable or not.

Lecture 8: Confidence Intervals under known $\sigma^2(1)$

- Interpretation of a Confidence Interval
- Math: P(lower bound < y < upper bound) = Confidence Level (i.e. 0.95)
 In words: The probability that our sampled & falls between (LB, UB) is [Confidence Level]

z-Test

- Lab= If we created 100 95% Confidence Intervals for 4, 95 of them would contain y (pop'n mean)
- Common Confidence Intervals for μ :

Confidence	α	Z	Confidence Interval	Picture Interpretation	Margin of Error
Level			X ± ZI-4/2 In State (M	0E)	
100% CI	0	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	$-\infty < y < t \infty$	Allan	$+\infty$
99 % CI (99	0.01	2.58	$\overline{\chi} \pm 2.58 \frac{\sigma}{\sqrt{n}}$	005	$2.58 \frac{\sigma}{\sqrt{n}}$
95% CI (95	0-05	1.96	x ± 1.96 5	.025 .025	1.965
90% Cl ୧୦.୩	0-10	1.64	$\overline{\chi} \pm 1.64 \frac{\sigma}{\sqrt{n}}$.05 .05	1.04 5 1.104 1 1

 $\mu = 10$ $\sigma^2 = 4$

Samples from	m N(10,4)				
Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
8.879049	12.448164	7.864353	10.852928	8.610586	10.506637
9.539645	10.719628	9.564050	9.409857	9.584165	9.942906
13.117417	10.801543	7.947991	11.790251	7.469207	9.914259
10.141017	10.221365	8.542217	11.756267	14.337912	12.737205
10.258575	8.888318	8.749921	11.643162	12.415924	9.548458
13.430130	13.573826	6.626613	11.377280	7.753783	13.032941
10.921832	10.995701	11.675574	11.107835	9.194230	6.902494
7.469877	6.066766	10.306746	9.876177	9.066689	11.169227
8.626294	11.402712	7.723726	9.388075	11.559930	10.247708
9.108676	9.054417	12.507630	9.239058	9.833262	10.431883

sample size: n = 10 $CI : \overline{X_i} \neq 1.96 \frac{\sigma}{\sqrt{n}} \Rightarrow \overline{X_i} \pm 1.96 \frac{2}{\sqrt{10}}$

Sample Means with 95% Confidence Intervals

Lecture 8: Confidence Intervals under known $\sigma^2(2)$

- Accuracy vs. Precision
 - Accuracy = Confidence Level
 - Precision = Margin of Error (MOE)
 - What is the relationship between accuracy (Confidence Level) and precision (MOE)? → Inverse Relationship s.t. Accuracy, & Precision & V.V.

What are the Assumptions to create these Confidence Intervals? (1) Simple Random Sample (2) Know σ² =) Z^{*} whoffs

Confidence Intervals when σ^2 unknown

• Why use a t-distribution?

We cannot replace or with s be our distribution will no longer be normal!

~7 T-Tests

• T-distribution vs. z-distribution

· t-value > z-value, always.

Confidence Intervals Summary

	σ^2 known	σ^2 unknown
Distribution	Normal Distribution (Z)	T-distribution (t)
Margin of Error (MOE)	$Z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$	$t_{af=n-1}^{*} \frac{s}{\sqrt{n}}$
Confidence Interval (CI)	$\overline{\chi} \pm \overline{Z}_{1-\frac{4}{2}\frac{\sigma}{4n}}$	$\overline{\chi} \pm t_{df=n-1}^{*} \frac{s}{\sqrt{n}}$
Find sample size based on MOE (n=?) Use Algebra to Back-solve.	$MOE = Z_{1-\alpha_{12}} \frac{\sigma}{\sqrt{n}}$ $\sqrt{n} = \frac{Z_{1-\alpha_{12}}}{MOE} \Rightarrow n = \left(\frac{Z_{1-\alpha_{12}}}{MOE}\right)^{2}$	$MOE = t_{df=n1}^{*} \frac{s}{\sqrt{n}}$ $N = \left(\frac{t^{*}s}{MOE}\right)^{2}$

Hypothesis Testing for μ

- Interpretation of the p-value: The probability of achieving the sample result or something more extreme if Ho is the
- Hypothesis Testing Steps on Next Slide practice these problems!

Step	σ^2 known	σ^2 unknown
(1) Hypothesis	I-Tailed Test $DH_0 = M = MI$ $H_A = M > MI$ $Z = H_0 = M = MI$ $H_A = M = MI$	2 Tailed Test 3 $H_0: M = M_1$ $H_{A^2} M \neq M_1$ $\frac{\pi I A}{-7} M_1 \overline{X}$
(2) Data	x 4	
	$\overline{\chi}, \sigma, n, d$	$\overline{\mathcal{R}}, S, N, \mathcal{A}$
(3) Statistical Test	Tailed Z-Val: $Z = \frac{X - M}{\sigma / \sqrt{n}}$	I-Tailed T-Value: $t_{df=n-1} = \frac{X-M}{S/dn}$
	2 Tailed Z-val: Find the p-val. for I-Tail ed & multiply by 2	
(4) Assumptions	(1) simple Random Sample (SRS)	
	(2) Normality either by n≥30 ⇒ CLT	
	n<30 >> sampling fr	mnormal popin.

Step	σ^2 known	σ^2 unknown
(5) Decision Rule DO NOT EVER say "we accept the null hypothesis"	p < 0.05 $p > 0.05reject \cdot x fail to reject(x = 0.05)$	t < t [*] reject pfail to rej- t [*] t [*] cnt
(6) Calculation	See above	See abore
(7) Statistical Decision	Reject Ho blc p-val < X <u>or</u> Fail to Reject Ho blc p-val > X	Reject Ho blc t-value (tont <u>or</u> <u>tail to Reject Ho blc t-val > tont.</u>
(8) Practical Decision	if <u>reject</u> Ho: * There is evidence to suggest that [41]" if <u>fail to reject</u> Ho: * There is insufficient evidence to sugg	[Variable] is [greater than/less than/other th Never (gt) (Lt) (ot) abbreviate these on an exam pls. est that [variable] is [gt/lt/ot][-41]"

<u>Confidence Interval Method of Hypothesis Testing:</u>

Test Ho: $\mu_{\text{private}} = \mu_{\text{university}}$ versus Ha: not so, at α =0.05

How would we do this? *Hint: what would have to change in the graph below?*

