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Normal Distribution and CLT

• Central Limit Theorem: 

• When is a sample “sufficiently large”? 

• When do we assume normality? 

• Inference: (1) Estimation vs. (2) Hypothesis Testing 

sampling distribution of > is approximately normal if n is

sufficiently large Reall : Lab 4 freq n = 10

nes EFNNormal+
n730

(1) n= 30 by CLT (large sample)
(2) if n is small (n(30) , assume we are sampling

Lecture 1/2 from a population that is normal
>& 11
- -

↓
↓ Pop sample

placing reasonable value (s) Hypothesize values for a
on a chosen pop'n parameter pop'n parameter and infer

CCi
.e· Confidence Intervals whether its reasonable or not.



Lecture 8: Confidence Intervals under known 𝝈𝟐(1)
• Interpretation of a Confidence Interval

• Math: 
• In words: 

• Common Confidence Intervals for 𝜇: 
Confidence 
Level

𝛼 𝑧 Confidence Interval Picture Interpretation

100% CI 

99 % CI

95% CI

90% CI 

-> Z-Test

un

population variance
Pllower bound<< upper bound)

= Confidence Level (i .e. 0 .95)

The probability that our sampled falls between (LB , UB) is
[Confidence Level]

Lab: Ifwe created 10095% Confidence Intervals for u , 95 of them would contain y (pop'n mean)
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Samples from N(10,4)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

8.879049 12.448164 7.864353 10.852928 8.610586 10.506637

9.539645 10.719628 9.564050 9.409857 9.584165 9.942906

13.117417 10.801543 7.947991 11.790251 7.469207 9.914259

10.141017 10.221365 8.542217 11.756267 14.337912 12.737205

10.258575 8.888318 8.749921 11.643162 12.415924 9.548458

13.430130 13.573826 6.626613 11.377280 7.753783 13.032941

10.921832 10.995701 11.675574 11.107835 9.194230 6.902494

7.469877 6.066766 10.306746 9.876177 9.066689 11.169227

8.626294 11.402712 7.723726 9.388075 11.559930 10.247708

9.108676 9.054417 12.507630 9.239058 9.833262 10.431883

Sample Means with 95% Confidence Intervals

Sample Mean Lower CI Upper CI Include 
Mean?

1 10.15 8.78 11.51 1

2 10.42 8.93 11.90 1

3 9.15 7.82 10.48 1

4 10.64 9.89 11.40 1

5 9.98 8.43 11.53 1

6 10.44 9.22 11.67 1

M = 10 , 0
2
= 4 sample size : n= 10

CI : it 1 .96 :1 .96

95 of theseIs will include 10

T
sum (include mean)

I #H=# of samples



Lecture 8: Confidence Intervals under known 𝝈𝟐(2) 
• Accuracy vs. Precision 

• Accuracy = 
• Precision = 
• What is the relationship between accuracy (                                     ) and 

precision (                     )? 

Confidence Level

Margin of Error (MOE)
confidence Level

moE -> Inverse Relationship s . t . ↑ Accuracy , ↓ Precision & V. V.

Highest
-> 99% CI - MOE = 2 . 588 - Largest

MOE

Least PreciseW
Accuracy M Av

93% CI - MOE = 1 .96
MO

Lowest ->90% CI
-> MOE = 1

.
64 - -Smallest MOE

Accuracy
In H

Most

I & Precise

leastprecise,
most precise,

most accurate
lowest accuracy



What are the Assumptions to create these Confidence 
Intervals?

Interpret your Confidence Interval for 95% 

(1) Simple Random Sample

⑪ (2) know 02 => z
*

cutoffs
(3) Data is Normal

If we create 100 CIs for dage , 95 of them
will capture the true mean.

Probability of our sampled
mean falls between

LB and UB is 95%.



Confidence Intervals when 𝜎2 unknown

• Why use a t-distribution? 

• T-distribution vs. z-distribution 

-> T-Tests

We cannot replace0 with s be our distribution will ho longer be normal !

· -value z-value , always.
· As degrees of freedom (df) ; -distribution approaches z-distr.

why ? df
= n- 1

CNOT a ↑If > n
=> converge to Normal distr .

proof) by CLT



Confidence Intervals Summary
𝜎2 known 𝜎2 unknown

Distribution

Margin of Error (MOE)

Confidence Interval (CI)

Find sample size based on MOE   
(n= ?) 

Normal Distribution (z) T-distribution (t)

S

zi-42 taf
= n+ m

** 71-4 ↑I
*

fent

MOE = Z1-42 MOE = tafian Fr
Use Algebra to
Back-solve . = n =(



Hypothesis Testing for 𝜇

• Interpretation of the p-value: 

• Hypothesis Testing Steps on Next Slide – practice these problems! 

The probability of achieving the sample
result or something more extreme ifHo is true



Step 𝜎2 known 𝜎2 unknown

(1) Hypothesis 

(2) Data

(3) Statistical Test

(4) Assumptions 

1-Tailed Test
p-val

2.Tailed Test

① Ho : y = MI-
Ha : M >Mi-·② Ho : M =MI
Ha : e < M ,· -i↓

-, X

*, 0 , n , X # Sin , L

I Tailed -Vali z = -M 1-Tailed T-value : tat=n = En·In

2Tailed z-val : Find the p-ral · for 1-Tail-
ed & multiply by 2

(1) Simple Random Sample (SRS)
(2) Normality

either by n230 = CLT

n < 30 => sampling from normal popin .



Step 𝜎2 known 𝜎2 unknown

(5) Decision Rule

(6) Calculation 

(7) Statistical 
Decision 

(8) Practical Decision 

P < 0 .05 p > 0 . 05 ↓(tritt) fait
DO NOT EVER -1 I
- -1
- reject.X fail to reject reject ↑ fail to rej.

say "We accept
the

(2= 0 .05) tit
null hypothesis"

See above see above

RetHo blcp-ral < &est o blc +-value (tit
O or

EttoReject#oblp-rakd EltoReject Ho b/c +-valstont
.

if Reject Ho : ① ② ③

"There is evidence to suggestthat (variables is /greater than/less than other than]

[M ,]
"

Never (gt) clt) (ot)
- -

-

if fail to reject Ho : abbreviatthese on an examplg ③-

-

"There is insufficient evidence to suggest that variable] is Ig+/It/ot] (M1]
"



Confidence Interval Method of Hypothesis Testing:
Test Ho:  µprivate =  µuniversity versus Ha: not so, at  α=0.05 

How would we do this? Hint: what would have to change in the graph below?

Ha:Uprivate Muniresity

overlapping intervals => fuil to reject
Ho

separate intervals
->rejectHo

G

Private
· -

· University


