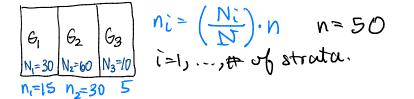
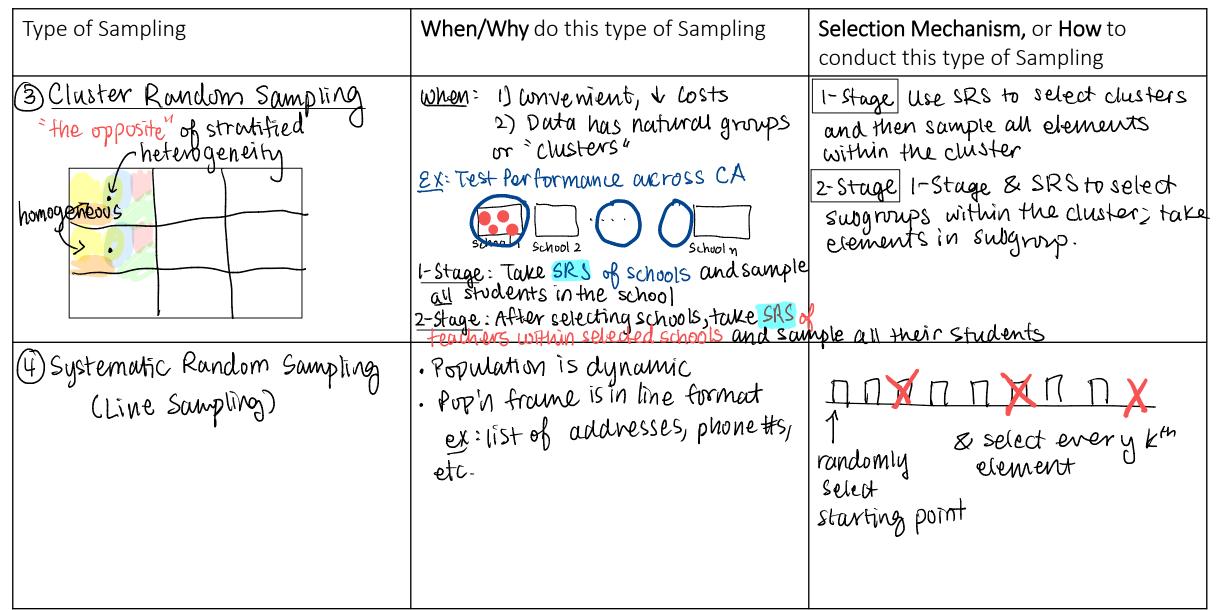
Week 2 Review

Cindy J. Pang

BIOSTAT 100A Summer Session C 2024 Bag August 16, 2024 Draw (7) w/o replacement M M Ð Ì B $(\mathbf{\hat{v}})$ (b) \bigcirc 0w/ 3 (F) 3 (a) replacement


Probability (Random) Sampling


Type of Sampling	When/Why do this type of Sampling ^ randomīzatim	Selection Mechanism, or How to conduct this type of Sampling
(1) Simple Random Sampling (SRS) every sample has an equal chance of being selected (1) <u>W/o replacement</u> - we don't put the draw back (2) <u>W/ replacement</u> - put the clement back.	convenience <u>Assumption</u> -assume respondents in the same are <u>homogeneous</u> . This is problematic blc most poplas are not homogeneous	(1) Population Listing/Pop'n Frame (2) Assign Unique 1D to each person the trame (3) Draw randomly.
(2) <u>Stratified random Sampling</u> nomogeneous heretogeneous	When: there are homogeneous subpopulations (strata) / covariates within the pop'n you are interested ed in \Rightarrow homogeneous within; heterogen- eous across. $n_i = \left(\frac{N_i}{N}\right)n = \left(\frac{30}{100}\right)50 = 1$, $\overline{N} = pop'n size$ $n_2 = \left(\frac{N_2}{N}\right)n = \left(\frac{60}{100}\right)50 = 30$ n = sample size	In colore the # of perpieto include

 $N_{3} = \left(\frac{N_{3}}{N}\right)n = \left(\frac{10}{100}\right)50 = 5$

N=100

Probability (Random) Sampling

Data Display

- We can estimate the **Frequency Distribution** with:
 - (1) Tables and Graphs
 - Frequency Table
 - Histogram ("Bar Graph")
 - Information from a histogram
 - Cumulative Frequency Polygon
 - percentiles
 - Boxplot •
 - rank statistics
 - parts of a boxplot
 - skewness, right vs left skew
 (2) "Theoretical" Description
 - - Normal (Gaussian) Distribution
 - Log-Normal Distribution
 - Why is this distribution useful?
 - Exponential Distribution
 - When is this distribution useful?
 - (3) Numerical (next lecture)
- Sensitivity vs Specificity
 - Trade-off between Sensitivity and Specificity \rightarrow What happens when you move the line?

2

(t) Test

(-)

- Outliers
 - how to identify outliers
 - inverse relationship what do you do about outliers? ۲

Sensitivity =
$$TP$$
 + $100 \rightarrow \%$ of people who correctly
 $= \frac{P(Have}{Oisorder} \cap Test +)$
 $P(Have Dis.)$
on with: = $P(+1D)$
 $Specificity = TN$
 $p(Have Dis.)$
 $p(Have D$

 \leftarrow FPT, TNV

Specificity L, Sensitivity A -> FNT, TPL, VFP Specificity T, Sensitivity V

Descriptive Statistics Tables and Graphs What does it tell us / Utility? What it looks like Penintage counts Cumulative Rel. Freg. Abs. Freq. Rel. Freq (%) Interval Gives you the numbers Frequency Tables Abs. Fren 1-2% 1-10 5 6 6-7% 11-20 11 · Shape of our frequency distr. · <u>outliers</u> > observations that Histogram Loutliers Freq. appear "extreme" Measurement 75% 100% Estimating <u>Percentiles</u> Cumulative Frequency 50% 1edian Polygon -75^mouruntile (Q3) erentile (al 25thp. (Q1) Coutlier outlier territory 75thp. (Q3) ·shape Boxplot ·identify outliers loutside whickers) if no outliars, then: ۲ + med. Q3+1.510R QI-1.STOR Theoretical Descriptions ·symmetric data ·mean=median Normal Distribution $N(y, \sigma^2)$ mean' vinance LN ·sk-ened data lrightskewed) Log-Normal Distribution Transf survival data **Exponential Distribution**

Numerical Descriptions of Data

- Measures of Location
 - (1) Arithmetic Mean (average)
 - (2) Median how to find the median when it is even vs odd
 - (3) Geometric Mean
 - (4) Mode
 - (5) Midrange

Measure of Location				
	Formula/ How to calculate it	When to use it	Statistic -> Sample	Parameter -> Population
Arithmetic Mean	$\overline{\chi} = \frac{1}{N} \sum_{i=1}^{n} \chi_i = \frac{\chi_i + \dots + \chi_n}{N}$	symmetric distr.	X = sample mean	y=pop'n mean
Median	order all values-> Yz < 50% percentile Y2 > 50% percentile	skemed.		
Geometric Mean	1.) $\log(x)$, $\tilde{t} = l_1 \dots n$ 2) mean of the logs $\overline{X}_{log} = \frac{1}{n} \stackrel{>}{\gtrsim} log(x \tilde{t})$	3.) (D ^x 103) exponential distr.		
Mode	most freq. value	Skewed data, bimodal □ < no mode		
Midrange	<u>Maxt Min</u> 2	Quick & Dirty Statistic		