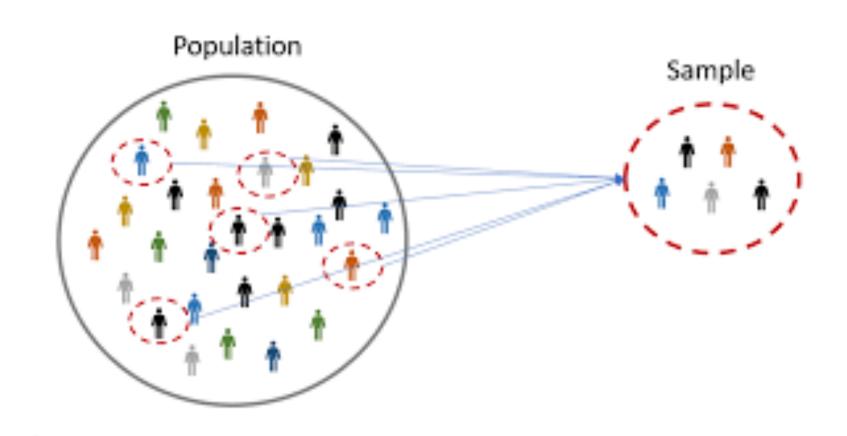
Fundamentals of Biostatistics (Lectures 1-4)

BIOSTAT 201A Fall 2025


Discussion 2 – October X, 2025

Cindy J. Pang

- 1. Lecture 1: Biostatistics, Inference, and Data
 - 1. Population vs. Sample, Parameter vs. Statistic
 - 2. Types of Data
- Lecture 2: Parameters vs. Statistics, Summary Statistics, and Data Visualization (See Problem 1)
 - 1. Measures of Location
 - 2. Measures of Spread
 - 3. Describing a Distribution
 - 4. Data Visualization Boxplots
- 3. Lecture 3: Probability, Conditioning, and Independence (see Problems 2 and 3)
- 4. Lecture 4: Random Variables, Sampling, and The Central Limit Theorem
 - 1. Discrete Random Variables
 - 2. Properties of the Normal Distribution
 - 3. Central Limit Theorem

- 1. Lecture 1: Biostatistics, Inference, and Data
 - 1. Population vs. Sample, Parameter vs. Statistic
 - 2. Types of Data
- 2. Lecture 2 : Parameters vs. Statistics, Summary Statistics, and Data Visualization (See Problem 1)
 - 1. Measures of Location
 - 2. Measures of Spread
 - 3. Describing a Distribution
 - 4. Data Visualization Boxplots
- 3. Lecture 3: Probability, Conditioning, and Independence (see Problems 2 and 3)
- 4. Lecture 4: Random Variables, Sampling, and The Central Limit Theorem
 - 1. Discrete Random Variables
 - 2. Properties of the Normal Distribution
 - 3. Central Limit Theorem

1.1 Population vs. Sample, Parameter vs. Statistic

1.2 Types of Data

- (1) Quantitative ("Quantifiable") discrete or continuous response of measurable magnitude
 - Continuous can take on an uncountable set of values
 - Discrete can take on a limited, and often fixed number of possible values
- (2) Qualitative no corresponding set of numbers

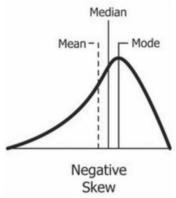
Can you produce some examples of each type of data?

1.2 Types of Data

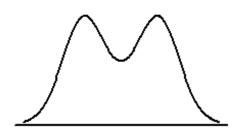
• Stevens' Scale of Data Classification

	Categorical	Order	Equal Spacing	True Zero	Examples
Nominal – categorical data without any sensible ordering of values	X				
Ordinal – categorical or discrete data with a natural ranking/ordering relationship	X	X			
Interval – has a notion of distance, defined by measurement units of equal size	X	X	X		
Ratio – has a notion of magnitudes or "x times greater"	Х	X	X	X	

- 1. Lecture 1: Biostatistics, Inference, and Data
 - 1. Population vs. Sample, Parameter vs. Statistic
 - 2. Types of Data
- Lecture 2: Parameters vs. Statistics, Summary Statistics, and Data Visualization (See Problem 1)
 - 1. Measures of Location
 - 2. Measures of Spread
 - 3. Describing a Distribution
 - 4. Data Visualization Boxplots
- 3. Lecture 3: Probability, Conditioning, and Independence (see Problems 2 and 3)
- 4. Lecture 4: Random Variables, Sampling, and The Central Limit Theorem
 - 1. Discrete Random Variables
 - 2. Properties of the Normal Distribution
 - 3. Central Limit Theorem

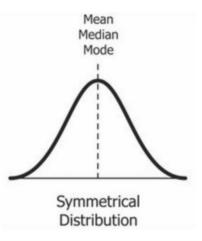

2.1 Measures of Location

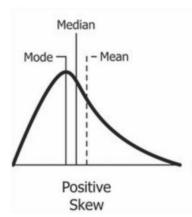
	Formula/How to Calculate it	What the Data Looks Like	
Mean	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	(a) Bell shaped (b) Triangular (c) Uniform (retangular)	
Median	Let observations x_1,\dots,x_n be ordered such that $x_1\leq x_2\leq \dots \leq x_n$ where x_1 is the minimum and x_n is the maximum $ \text{If } n \text{ is even, the median is the average of } x_{\frac{n}{2}} \text{ and } x_{\frac{n+1}{2}} $ If n is odd, the median is $x_{\frac{n+1}{2}}$	(d) Right skewed (e) Left skewed	
Mode	Most common value	(i) Multi-modal	


2.2 Measures of Spread

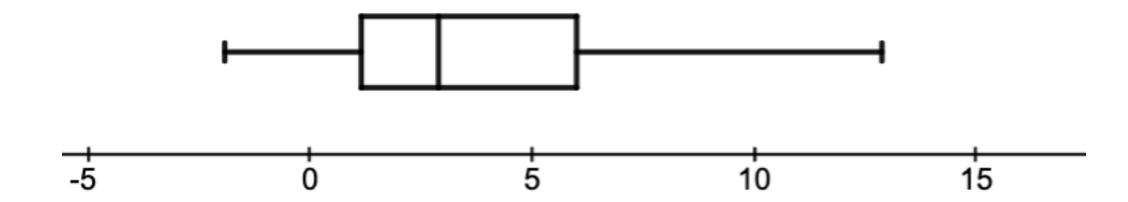
	Formula/How to Calculate it
Range	Range = $x_{max} - x_{min}$
Interquartile Range (IQR)	$IQR = x_{75th \ percentile} - x_{25th \ percentile} = Q3 - Q1$
Sample Variance/Standard deviation ($\sqrt{s^2}$)	$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$

2.3 Describing a Distribution





(h) Bimodal



2.4 Data Visualization - Boxplots

2.4 Data Visualization – Stem and Leaf

15, 16, 21, 23, 23, 31, 35, 39, 40, 41, 46, 55, 56

- 1. Lecture 1: Biostatistics, Inference, and Data
 - 1. Population vs. Sample, Parameter vs. Statistic
 - 2. Types of Data
- 2. Lecture 2 : Parameters vs. Statistics, Summary Statistics, and Data Visualization (See Problem 1)
 - 1. Measures of Location
 - 2. Measures of Spread
 - 3. Describing a Distribution
 - 4. Data Visualization Boxplots
- 3. Lecture 3: Probability, Conditioning, and Independence (see Problems 2 and 3)
- 4. Lecture 4: Random Variables, Sampling, and The Central Limit Theorem
 - 1. Discrete Random Variables
 - 2. Properties of the Normal Distribution
 - 3. Central Limit Theorem

Some general probability rules

- Complements: $P(\overline{E}) = 1 P(E)$
- Independence of Events:
 - (1) Event A is independent of Event B if the joint probability of A and B can be expressed as:

$$P(A \cap B) = P(A)P(B)$$

(2) Event A is independent of Event B is the following conditional holds:

$$P(A|B) = P(A), P(B) > 0$$

- Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A|B)P(B)}{P(B)}$
- Rule of Total Probability: $P(A) = P(A|B)P(B) + P(A|\overline{B})P(B)$

- 1. Lecture 1: Biostatistics, Inference, and Data
 - 1. Population vs. Sample, Parameter vs. Statistic
 - 2. Types of Data
- 2. Lecture 2 : Parameters vs. Statistics, Summary Statistics, and Data Visualization (See Problem 1)
 - 1. Measures of Location
 - 2. Measures of Spread
 - 3. Describing a Distribution
 - 4. Data Visualization Boxplots
- 3. Lecture 3: Probability, Conditioning, and Independence (see Problems 2 and 3)
- 4. Lecture 4: Random Variables, Sampling, and The Central Limit Theorem
 - 1. Discrete Random Variables
 - 2. Properties of the Normal Distribution
 - 3. Central Limit Theorem

4.1 Discrete Random Variables - Example

Probability Mass Function (PMF) – probability distribution for a discrete variable

Value	1	2	4	6
Probability	0.2	0.1	0.4	0.3

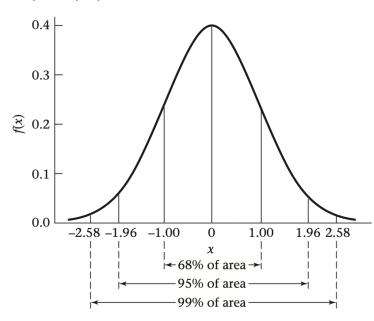
Exercise. Compute

(a) Expected Value of X:

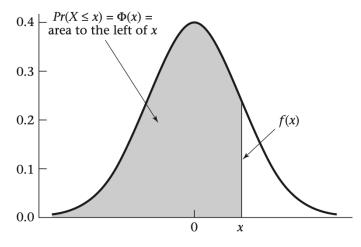
(b) Variance of X:

(c) Construct the cumulative distribution function (cdf)

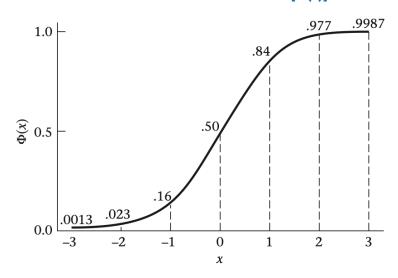
Expected Value of a Discrete RV:


$$\mathbb{E}(X) = \sum_{i=1}^{n} x_i \Pr(X = x_i)$$

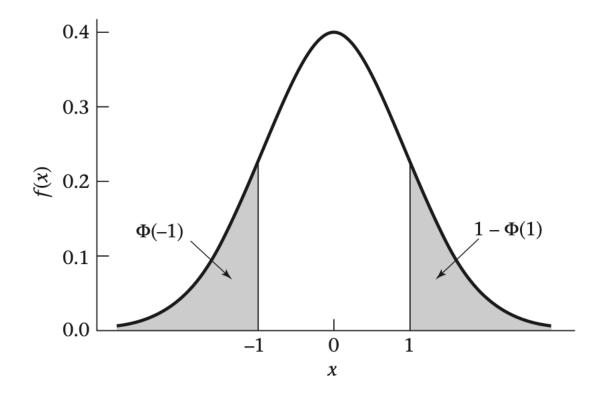
Variance of a Discrete RV:

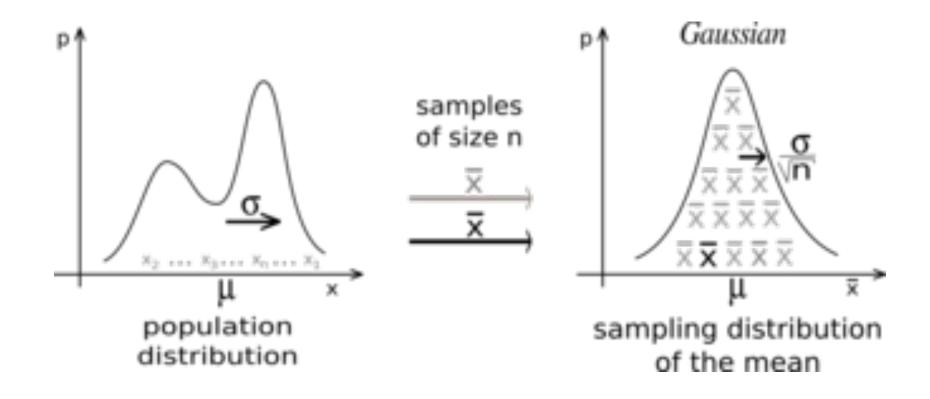

$$Var(X) = \mathbb{E}(X - \mu)^2 = \sum_{i=1}^{n} x_i^2 \Pr(X = x_i) - \mu^2$$

4.2 Properties of the Normal Distribution – The Empirical Rule and CDF


Empirical properties of the standard normal distribution

The cdf $[\Phi(x)]$ for a standard normal distribution


The cdf for a standard normal distribution $[\Phi(x)]$


4.2 Properties of the Normal Distribution - Symmetry

$$\Phi(-x) = 1 - \Pr(X \le x) = 1 - \Phi(x)$$

Illustration of the symmetry properties of the normal distribution

4.3 Central Limit Theorem

