One-Sample Inference (Lectures 5 & 6)

BIOSTAT 201A Fall 2025

Discussion 3 – October 17, 2025

Cindy J. Pang

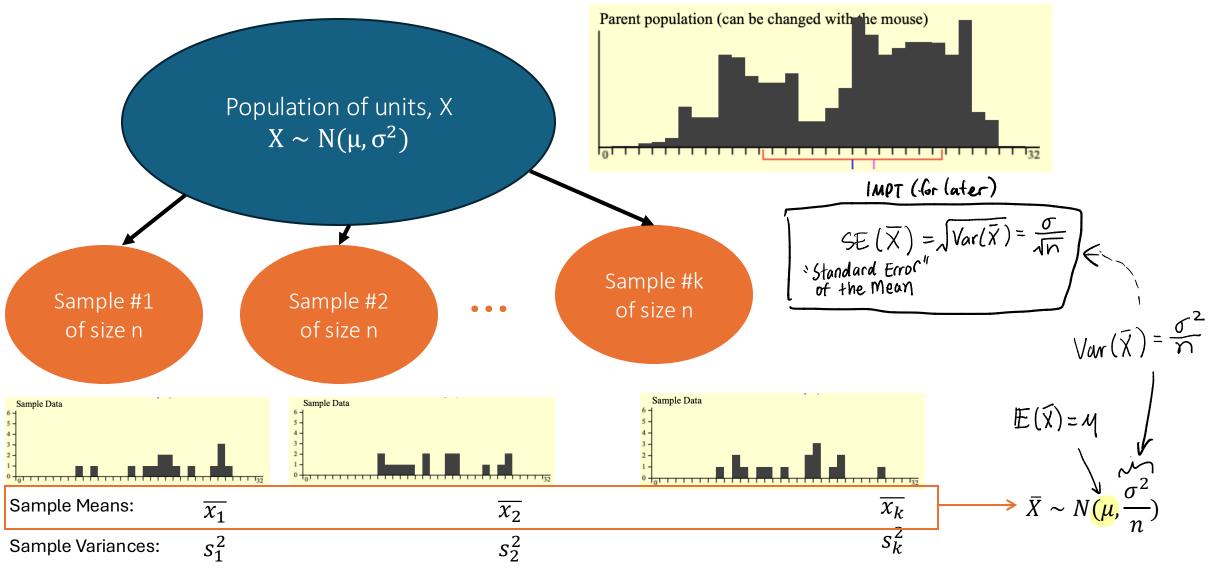
Outline

- Lecture 4. Point and Confidence Interval Estimation for Population Mean
 - 1. Sampling Distribution of the Mean
 - 2. Confidence Intervals for Means
- 2. Lecture 5. Point and Confidence Interval Estimation for Population Proportion
 - 1. Binomial Distribution
 - 2. Normal Approximation to the Binomial Distribution

Outline

- Lecture 4. Point and Confidence Interval Estimation for Population Mean
 - 1. Sampling Distribution of the Mean
 - 2. Confidence Intervals for Means
- 2. Lecture 5. Point and Confidence Interval Estimation for Population Proportion
 - 1. Binomial Distribution
 - 2. Normal Approximation to the Binomial Distribution

1.1 Sampling Distribution of the Mean

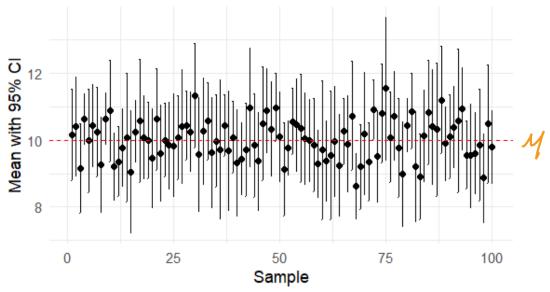


1.2 Confidence Intervals for Mean (Intuition)

		1191	/	_		
	Samples from N(10,4)					
Γ	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
l	8.879049	12.448164	7.864353	10.852928	8.610586	10.506637
l	9.539645	10.719628	9.564050	9.409857	9.584165	9.942906
l	13.117417	10.801543	7.947991	11.790251	7.469207	9.914259
l	10.141017	10.221365	8.542217	11.756267	14.337912	12.737205
l	10.258575	8.888318	8.749921	11.643162	12.415924	9.548458
l	13.430130	13.573826	6.626613	11.377280	7.753783	13.032941
l	10.921832	10.995701	11.675574	11.107835	9.194230	6.902494
l	7.469877	6.066766	10.306746	9.876177	9.066689	11.169227
l	8.626294	11.402712	7.723726	9.388075	11.559930	10.247708
l	9.108676	9.054417	12.507630	9.239058	9.833262	10.431883

Sample Means with 95% Confidence Intervals					
Sample	Mean	Lower Cl	Upper Cl	Include Mean?	
1	X = 10.15	8.78	11.51	1	
2	X = 10.42	8.93	11.90	1	
3	9.15	7.82	10.48	1	
4	10.64	9.89	11.40	1	
5	9.98	8.43	11.53	1	
6	10.44	9.22	11.67	1	

95% of the confidence Intervals will contain the true mean y



1.2 Confidence Intervals for Mean

Adjustment Factor

Scenario	Assumptions	Confidence Interval for Mean
Known σ^2 , sample size n > 30	No Assumptions due to Central Limit Theorem!	Point to Standard Errors of the
Unknown σ^2 and large n (n > 200)	Population is (approximately) normal	Point Estimate $\bar{x} \pm z_{1-\alpha/2}$ $\frac{s}{\sqrt{n}}$ mean
Unknown σ^2 and small n (n \leq 200)		$\bar{x} \pm t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}$

Exercise.

Pulmonary Disease

The data in Table 6.10 concern the mean triceps skin-fold thickness in a group of normal men and a group of men with chronic airflow limitation [5].

TABLE 6.10 Triceps skin-fold thickness in normal men and men with chronic airflow limitation Unknown (2 Small n

		<u> </u>		
Group	Mean	sd	n	
	X _N = 1.35	S _N = 0.5	∩ _N = 40	
Chronic airflow limitation	0.92	0.4	32	

Source: Adapted from Chest, 85(6), 58S-59S, 1984.

Scenario	Assumptions	Confidence Interval for Mean
Known σ^2 , sample size n > 30	No Assumptions due to Central Limit Theorem!	$\bar{x} \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$
Unknown σ^2 and large n (n > 200)	Population is (approximately)	$\bar{x} \pm z_{1-\alpha/2} \frac{s}{\sqrt{n}}$
Unknown σ^2 and small n (n \leq 200)	normal	$\bar{x} \pm t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}$

a) Compute the Standard Error of the Mean for the Normal Group

) What is an Unbiased Estimator of the Population Mean?

$$E(\bar{X}) = M \Rightarrow$$
 The sample mean

) What is an Unbiased Estimator of the Population Variance?

$$\mathbb{E}(S^2) = \sigma^2 = 3$$
 The sample variance.

d) Compute a 95% Confidence Interval for the Mean of the Normal Group

$$7_{N} \pm t_{n-1} \sqrt{\frac{s}{4n}} = 1.35 \pm t_{39,0.975} \left(\frac{0.5}{40} \right)$$

$$\alpha = 0.05 = 1.35 \pm 2.02 \left(\frac{0.5}{40} \right)$$

$$= [1.190, 1.510]$$

e) Compute a 90% Confidence Interval for the Mean of the Normal Group

$$X_N \pm t_{n-1,1-\alpha/2} = 1.35 \pm t_{29,0.95} = 1.35 \pm 1.68 = 1.35 \pm 1.35 = 1.35 \pm 1.35 = 1.35 \pm 1.35 = 1.35 \pm 1.35 = 1.35 = 1.35 = 1.35 = 1.35 = 1.35 = 1.35 = 1.35 = 1.35 =$$

f) Compare the 90% vs. 95% Confidence Intervals. Which one is larger, and what does that tell you about the precision of the estimate?

The 95% Confidence Interval is much wider compared to the 90% c.i, indicating that it is less precise.

Outline

- 1. Lecture 4. Point and Confidence Interval Estimation for Population Mean
 - 1. Sampling Distribution of the Mean
 - 2. Confidence Intervals for Means
- 2. Lecture 5. Point and Confidence Interval Estimation for Population Proportion
 - 1. Binomial Distribution
 - 2. Normal Approximation to the Binomial Distribution

2.1 The Binomial Distribution

A **binomial random variable** counts the number of "successes" in the n independent trials, where each trial has a probability p of success

$$X \sim Binomial(n, p)$$

where
$$P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$$
 where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ or "n-choose-k"

Conditions:

- 1. Experiment consists of *n* identical and independent (iid) trials
- 2. Dichotomous outcomes (only two possible outcomes) on each trial
- 3. Pr("success") = p, Pr("failure") = 1-p where p is constant
- 4. Variable of interest is the number of successes observed during the *n* trials

2.1 The Binomial Distribution

A binomial random variable counts the number of "successes" in the n independent trials, where each trial has a probability p of success

$$X \sim Binomial(n, p)$$

where
$$P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$$
 where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ or "n-choose-k"

Exercise. Let p = 0.2 and n = 5.

xercise. Let p = 0.2 and n = 5.

$$\frac{k}{P(X=k)} = \frac{1}{0.32768} = \frac{2}{0.4096} = \frac{3}{0.0512} = \frac{4}{0.00032}$$

Where $\frac{k}{k} = \frac{1}{0.00032} = \frac{1}{0.00032} = \frac{1}{0.00032}$

Where $\frac{k}{k} = \frac{1}{0.32768} = \frac{1}{0.4096} = \frac{1}{0.2048} = \frac{1}{0.0512} = \frac{1}{0.00032}$

Where $\frac{k}{k} = \frac{1}{0.00032} = \frac{1}{0.00032$

(a) What is the Expected Number of Successes?

$$E(X) = 0(0.32768) + 1(.4096) + ... + 5(.00032) = 1$$
 which is also $np = 5(0.2) = 1$

(b) What is the Variance of Successes?

$$Vaw(X) = 0^{2}(0.32768) + 1^{2}(.4096) + ... + 5^{2}(.00032) - 1^{2} = 1.8 - 1^{2} = 0.8$$
 is also $npg = \frac{5(.2)(.8) = 0.8}{-1}$

 $Vaw(X) = 0^{2}(0.3\lambda768) + 1^{2}(.4096) + ... + 5^{2}(.0003\lambda) - 1^{2} = 1.8 - 1^{2} = 0.8 \text{ is also } npq = \frac{5(.2)(.8) = 0.8}{=1}$ (a) Compute the $Pr(X \le 3)$. $Pr(X \le 3) = \sum_{k=0}^{3} Pr(X = k) = Pr(X = 0) + ... + Pr(X = 3) = 0.99328$

2.2 Normal Approximation to the Binomial Distribution

What you want to Estimate	Distribution	Assumption	Confidence Interval
Number of Successes	$X \sim N(np, np(1-p))$	$np(1-p) \ge 5$	SE(p̂)
Proportions	$\hat{p} \sim N(p, \frac{p(1-p)}{n})$ where $\hat{p} = \frac{X}{n}$		$\hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Exercise. You obtain a simple random sample of 80 individuals, and 52 report having received a flu shot.

a) What is
$$\hat{p}$$
? $\hat{\rho} = \frac{\chi}{N} = \frac{52}{80} = 0.65$

a) What is
$$\hat{p}$$
? $\hat{\rho} = \frac{\chi}{N} = \frac{52}{80} = 0.65$
b) What is the standard error of \hat{p} ? $\hat{p}(1-\hat{p}) = 0.65(1-0.65) = 0.0533$

What is the 95% confidence interval for p?

$$z_{0.0975} = 1.96 \Rightarrow 0.65 \pm 1.96 \boxed{0.05(1-0.05)} = [0.545, 0.755]$$

d) Now suppose in a smaller nearby community, where you collect data from 80 individuals, and 12 have received a flu shot. Can you use the normal approximation to compute a 95% confidence interval? If not, explain why.

Yes, because
$$np(1-p) = 80(\frac{12}{80})(1-\frac{12}{80}) = 12(1-\frac{12}{80}) = 10.2 \ge 5.$$