Two-Sample Inference (Lectures 8-10)

BIOSTAT 201A Fall 2025

Discussion 5 – October 31, 2025

Cindy J. Pang

Outline

- 1. Motivation for Two Sample Inference Problems
- 2. Two Sample Inference for Paired Data (Lecture 8)
- 3. Two Sample Inference for Independent Samples (Lecture 9 & 10)

Two Sample Problems

- Goal of Two Sample Problems:
 - (1)
 - (2)
- Types
 - 1.
 - 2.
 - Unpaired is more likely to reject but why should we still use a paired test?

- Situations where we do matched-pairs in clinical research:
 - 1.
 - 2.

Two-Sample Problems	Dependent Groups (Paired Data)		
Hypotheses			
Data			
Assumptions			
Test Statistic			
Decision Rule			
Confidence Interval			

	Raw scale urinary protein (g/24 hr)	
Patient	Before	After
1	25.6	10.1
2	17.0	5.7
3	16.0	5.6
4	10.4	3.4
5	8.2	6.5
6	7.9	0.7
7	5.8	6.1
8	5.4	4.7
9	5.1	2.0
10	4.7	2.9

Renal Disease. We are interested to see if the raw scale of urinary protein changes after 8 weeks.

(a) Identify the appropriate statistical procedure to do this. Explain.

(b) Did urinary protein change after 8 weeks? Use a hypothesis test to determine this.

(c) Compute a 95% confidence interval for the differences in urinary protein change. How does your created confidence interval support your conclusions in part (b)?

Two-Sample Problems	Independent Groups			
	Equal Variances	Unequal Variances	Test for Equality of Variances	
Hypotheses				
Data				
Assumptions				
Test Statistic				
Decision Rule				
Confidence Interval				

Nutrition. The mean ± 1 sd of ln [calcium intake (mg)] among 25 females, 12 to 14 years of age, below the poverty level is 6.56 \pm 0.64. Similarly, the mean \pm 1 sd of ln [calcium intake (mg)] among 40 females, 12 to 14 years of age, above the poverty level is 6.80 \pm 0.76.
(a) Test for a significant difference between the variances of the two groups.
(b) Test for whether there is a significant difference in means between the two groups.
(c) Create a 95% Confidence Interval for the difference in means between the two groups.