Two-Sample Inference (Lectures 8-10)

BIOSTAT 201A Fall 2025

Discussion 5 – October 31, 2025

Cindy J. Pang

Outline

- 1. Motivation for Two Sample Inference Problems
- 2. Two Sample Inference for Paired Data (Lecture 8)
- 3. Two Sample Inference for Independent Samples (Lecture 9 & 10)

Two Sample Problems

- Goal of Two Sample Problems:
 - (1) Compare 2 Samples
 - (2) Identify Important Covaniates (i.e. Males vs. Females, Young vs. Old, etc.)
- Types
 - · 1. Stratified Randomization (Independent Samples)
 - · 2. matched-Pairing (Dependent Samples)
 - Unpaired is more likely to reject but why should we still use a paired test?
 if there is a reason to do do matched pairs; we sHOULD do it, be it helps w/ controlling for covariantes (Goal #2)
 - Situations where we do matched-pairs in clinical research:
 - 1. Cross-Over Design

 Drug es

 2. Pre-Post Design

 Placebo

Two-Sample Problems	Dependent Groups (Paired Data)		
Hypotheses	Let 0 = 41-M2		
	Let $\Delta = M_1 - M_2$ $H_0: \Delta = 0$ vs. $H_1 = \Delta \neq 0$		
Data	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Assumptions	The population of differences is normally distributed with mean 2 and variance of 2		
Test Statistic	$t = \frac{\overline{d}}{S_4/\sqrt{n}}$		
Decision Rule	1t1 > tdf=n+,1-4/2 ⇒ Reject Ho 1tl < tdf=n-1,1-4/2 > Fail to reject Ho		
Confidence Interval	$d \pm t_{n+1} - 4/2 \frac{Sd}{\sqrt{n}}$ where $SE(d) = \frac{Sd}{\sqrt{n}}$		

Renal Disease. We are interested to see if the raw scale of urinary protein
changes after 8 weeks.

(a) Identify the appropriate statistical procedure to do this. Explain.

Paired T-test since data are paired; dependence

(b) Did urinary protein change after 8 weeks? Use a hypothesis test to determine this.

$$H_0$$
: $\Delta = 0$ vs. $\Delta \neq 0$
"no change" "changed"

Assuming the population of differences is normally distributed with mean Δ and variance G_2^2 ,

$$TS = \frac{\overline{d}}{54/\sqrt{10}} = \frac{5.84}{5.29/\sqrt{10}} = 3.49$$
, $t_{af=9,0.975} = 2.24$

TS = $\frac{d}{Sl/In} = \frac{5.84}{5.29/ID} = 3.49$, $t_{4f=9,0.975} = 2.26$ Since TS = 3.49 > 2.26, we reject the null hypothesis and conclude that there is a change in urinary protein after 8nks. (c) Compute a 95% confidence interval for the differences in urinary protein

change. How does your created confidence interval support your

conclusions in part (b)? $\frac{5d}{d\pm t_{9,0.975}} = 5.84 \pm 2.62 \left(\frac{5.29}{10}\right) = (2.06,9.62)$ Since our C1 does not include 0, we conclude that there is a significant difference in unnary protein change like we did in part (b)

Raw scale urinary protein
$$(g/24 \text{ hr})$$

Patient

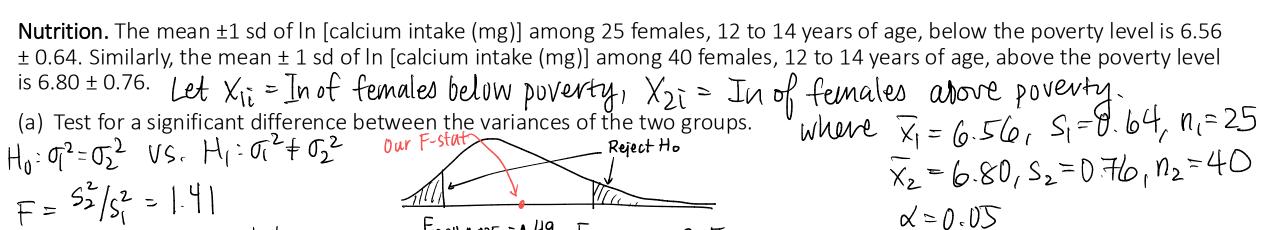
Before

After

Diff

1 25.6 10.1 15.5
2 17.0 5.7 11.3
3 16.0 5.6
4 10.4 3.4
5 8.2 6.5
6 7.9 0.7
7 5.8 6.1
8 5.4 4.7
9 5.1 2.0
10 4.7 2.9 1.8

Two-Sample Problems		Independent Groups				
	Equal Variances	Unequal Variances	Test for Equality of Variances			
Hypotheses		$H_0: M_1 = M_2 \iff M_1 - M_2 = 0$ $H_1: M_1 \neq M_2 \iff M_1 - M_2 \neq 0$				
Data	Sample 1: $\bar{X}_{1}, S_{1}^{2}, N_{1}$ Sample 2: $\bar{X}_{2}, S_{2}^{2}, N_{2}$					
Assumptions	$X_{1i} \sim N(M_{1}, \sigma^{2}), X_{2i} \sim N(M_{2}, \sigma^{2})$ where $\sigma^{2} = \sigma_{1}^{2} = \sigma_{2}^{2}$	$(X_{1i} \sim N(M_{1j}\sigma_{1}^{2}))$ $(X_{2i} \sim N(M_{2i}\sigma_{2}^{2}))$				
Test Statistic	$t = \frac{x_1 - x_2}{sp_{n_1} + h_2} \text{ where } sp = \sqrt{\frac{(n_1^{-1})s_1^2 + (n_2^{-1})}{n_1 + n_2}}$	$\frac{S_{2}^{2}}{\sqrt{\frac{S_{1}^{2}}{N_{1}} + \frac{S_{2}^{2}}{N_{2}}}}$	$F = \frac{S_2^2}{S_1^2} \text{ where } S_2 \ge S_1$			
Decision Rule	1+1>tdf=n+nz-2,1-4/2=> Reject Ho 1+1<+df=n+nz-2,1-4/2=> Fail to Reject Ho	Use Satterwaithe's Approx. for df s.t. $d' = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1} + \frac{s_2}{n_2} + \frac{s_2}{n_2}\right)^2} \text{and round down to nearest}$ Then $ t \geq t_{d'', 1} - \frac{d}{2} \Rightarrow \text{Reject Ho}$ $ t \leq t_{d'', 1} - \frac{d}{2} \Rightarrow \text{Fail to Reject Ho}$	F>F _{n2-1,n-1,1-1/2} or => Reject Ho F <f<sub>n2-1,n-1,1-1/2 o.w. => Fail to Reject Ho</f<sub>			
Confidence Interval	$(\bar{\chi}_1 - \bar{\chi}_2) \pm t_{n_1 + n_2 - 2, 1 - 9/2} Sp \sqrt{\frac{1}{n_1}} + r$	$\frac{1}{2} \left(\frac{1}{x_1 - x_2} \right) \pm t_{a'', 1 - a'_2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$				



Since our fest statistic is between $F_{39,24,0.025} = 0.49$ $F_{39,24,0.975} = 2.15$ $F_{39,24,0.025}$ and $F_{39,24,0.975}$ we fail to reject the and conclude that the variances of the two groups are not significantly different.

(b) Test for whether there is a significant difference in means between the two groups. $H_0: M_1=M_2$ vs. $H_1: M_1 \neq M_2$ w) pooled variance regulating of variances s.t. $\sigma^2 = \sigma_1^2 = \sigma_2^2$)

 $TS = \frac{x_1 - x_2}{Sp\sqrt{h_1 + h_2}} \text{ where } Sp = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{(25 - 1)(0.64)^2 + (40 - 1)(0.76)^2}{25 + 40 - 2}} = 0.717, \text{ thit} = \frac{1.99}{63,0.975} = 1.99$

= 6.56-6.80 Since |TS| < 1.99, we fail to reject the and conclude that there is no significant difference in mean calaium intake between females age 12-14 above and

below the poverty line. = -1.314

(c) Create a 95% Confidence Interval for the difference in means between the two groups.

 $(\bar{\chi}_1 - \bar{\chi}_2) \pm t_{ont} S_P \Big|_{n_1} + t_{n_2} = (-0.605, 0.125) \rightarrow \text{includes } 0 \rightarrow \text{no significant aiff blt groups}.$