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Data Set-Up

Individual (𝒊) Potential Outcomes Actual Treatment

𝑊𝑖 = ቊ
1 𝑖𝑓 𝑡𝑟𝑒𝑎𝑡𝑒𝑑
0 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

Observed Outcome

𝑌𝑖
𝑜𝑏𝑠

1 66 ? 0 66

2 0 ? 0 0

3 0 ? 0 0

4 ? 0 1 0

5 ? 607 1 607

6 ? 436 1 436

Objective: we are interested in estimating ? or 𝑌𝑚𝑖𝑠

𝑌𝑖 0 𝑌𝑖 1



Bayes 101 (Missing Data’s Version)

𝑃𝑟 𝐴 𝐵 =
𝑃𝑟(𝐴 ∩ 𝐵)

𝑃𝑟 𝐵
=

𝑃𝑟 𝐵 𝐴 𝑃𝑟 𝐴

𝑃𝑟 𝐵

Drop P(B) since it’s a normalizing constant

𝑃𝑟 𝐴 𝐵  ∝  𝑃𝑟(𝐵|𝐴) × 𝑃𝑟(𝐴)

Posterior 
the quantity 

we want

Likelihood 
Updates the 

Prior

Prior
We *aSsUmE* 

this

Let 𝓤 denote the Unknowns and 𝓚 denote the Knowns: 

𝑃𝑟 𝒰 𝒦  ∝  𝑃𝑟(𝒦|𝒰) × 𝑃𝑟(𝒰)



Bayes 101 (Missing Data Version)
We write 𝒰 = 𝑌𝑚𝑖𝑠 and 𝒦 = 𝑌𝑜𝑏𝑠, 𝑊, 𝑋, 𝜃 where 𝑋 is a covariate matrix and 𝜃 is a model parameter that governs 
some said distribution. Then we rewrite our problem as:

 
𝑃𝑟 𝒀mis 𝒀obs, 𝑾, 𝑿, 𝜃 ∝ 𝑃𝑟 𝒀 0 , 𝒀 1 , 𝑾, 𝑿, 𝜃

∝ ෑ

𝑖=1

𝑁

𝑃𝑟 𝑊𝑖 𝑌𝑖 0 , 𝑌𝑖 1 , 𝑋𝑖 , 𝜃 ⋅ 𝑃𝑟(𝑌𝑖(0), 𝑌𝑖(1)| 𝑋𝑖 , 𝜃)  ⋅ 𝑃𝑟(𝑋𝑖|𝜃)

This is kinda complicated tho… so let’s introduce…. 

U
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Bayes 101 (Missing Data Version)
We write 𝒰 = 𝑌𝑚𝑖𝑠 and 𝒦 = 𝑌𝑜𝑏𝑠, 𝑊, 𝑋, 𝜃 where 𝑋 is a covariate matrix and 𝜃 is a model parameter that governs 
some said distribution. Then we rewrite our problem as:

 
𝑃𝑟 𝒀mis 𝒀obs, 𝑾, 𝑿, 𝜃 ∝ 𝑃𝑟 𝒀 0 , 𝒀 1 , 𝑾, 𝑿, 𝜃

∝ ෑ

𝑖=1

𝑁

𝑃𝑟 𝑊𝑖 𝑌𝑖 0 , 𝑌𝑖 1 , 𝑋𝑖 , 𝜃 ⋅ 𝑃𝑟(𝑌𝑖(0), 𝑌𝑖(1)| 𝑋𝑖 , 𝜃)  ⋅ 𝑃𝑟(𝑋𝑖|𝜃)

Unconfoundedness (𝑊𝑖 ⊥ 𝑌𝑖 0 , 𝑌𝑖 1 𝑋𝑖  allows us to drop 
𝑃𝑟 𝑊𝑖 𝑌𝑖 0 , 𝑌𝑖 1 , 𝑋𝑖, 𝜃  and  𝑃𝑟(𝑋𝑖|𝜃) 

∝ ς𝑖:𝑊𝑖=0 𝑃𝑟 𝑌𝑖 1 𝑌𝑖 0 , 𝑋𝑖 , 𝜃  ς𝑖:𝑊𝑖=1 𝑃𝑟 𝑌𝑖 0 𝑌𝑖 1 , 𝑋𝑖 , 𝜃



Toy Example
*SUPPOSE* (𝑌𝑖 0 , 𝑌𝑖 1 ) has the following joint distribution:

𝑌𝑖(0)
𝑌𝑖(1)

∼ 𝑁(𝜇, 𝛴) where 𝜇 = 𝜇0, 𝜇1  and 𝛴 =
𝜎0

2 𝜌𝜎0𝜎1

𝜌𝜎0𝜎1 𝜎1
2

We observe 𝑌𝑖
𝑜𝑏𝑠 = 𝑊𝑖𝑌𝑖 1 + 1 − 𝑊𝑖 𝑌𝑖 0  so some of the 𝑌𝑖 0 ’s and 𝑌𝑖 1  ‘s are 

observed. 

In this example, we want to find 𝜃 = 𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜌  and subsequently capture the 
true Average Treatment Effect (ATE) for the finite population setting: 

𝜏𝐹𝑃 =
1

𝑁
෍

𝑖=1

𝑁

𝑌𝑖 1 − 𝑌𝑖 0



Toy Example
𝜇0 𝜇1 𝜌

𝜎0 𝜎1 𝜏𝐹𝑃



Toy Example – Some Issues

*SUPPOSE* (𝑌𝑖 0 , 𝑌𝑖 1 ) has the following joint distribution:

𝑌𝑖(0)
𝑌𝑖(1)

∼ 𝑁(𝜇, 𝛴) where 𝜇 = 𝜇0, 𝜇1  and 𝛴 =
𝜎0

2 𝜌𝜎0𝜎1

𝜌𝜎0𝜎1 𝜎1
2

We observe 𝑌𝑖
𝑜𝑏𝑠 = 𝑊𝑖𝑌𝑖 1 + 1 − 𝑊𝑖 𝑌𝑖 0  so some of the 𝑌𝑖 0 ’s and 𝑌𝑖 1  ‘s are 

observed. 

We never observe 
(𝑌𝑖 0 , 𝑌𝑖 1 ) jointly, which 

raises concerns about 
whether 𝜌 is identifiable



Toy Example – Identifiability 

• Frequentists: A parameter 𝜃 is identifiable if
𝜃 ≔ 𝑓 𝑌𝑖

𝑜𝑏𝑠

• Bayesians: 

“they just 
are” – 

Lindley 
(2015)

There is a thing 
called “weakly” or 

“partially 
identifiable” – 

Gustafson (2015) No real 
consensus – 
Bayesians 



Toy Example – Some Issues

*SUPPOSE* (𝑌𝑖 0 , 𝑌𝑖 1 ) has the following joint distribution:

𝑌𝑖(0)
𝑌𝑖(1)

∼ 𝑁(𝜇, 𝛴) where 𝜇 = 𝜇0, 𝜇1  and 𝛴 =
𝜎0

2 𝜌𝜎0𝜎1

𝜌𝜎0𝜎1 𝜎1
2

We observe 𝑌𝑖
𝑜𝑏𝑠 = 𝑊𝑖𝑌𝑖 1 + 1 − 𝑊𝑖 𝑌𝑖 0  so some of the 𝑌𝑖 0 ’s and 𝑌𝑖 1  ‘s are 

observed. 

Strategy 2: Separate 𝜃 = 𝜃𝑎 , 𝜃𝑚  where  𝜃𝑚 = 𝜇1, 𝜇2, 𝜎0, 𝜎1  and 𝜃𝑎 = 𝜌. Now our posterior 
becomes: 

𝑃𝑟 𝒀mis 𝒀obs, 𝑾, 𝑿, 𝜃 ∝ 𝑃𝑟 𝜃𝑎 𝑃𝑟 𝜃𝑚 ෑ

𝑖:𝑊𝑖=1

𝑃𝑟 𝑌𝑖 1 𝑌𝑖 0 , 𝑋𝑖, 𝜃𝑚 ෑ

𝑖:𝑊𝑖=0

𝑃𝑟 𝑌𝑖 0 𝑌𝑖 1 , 𝑋𝑖, 𝜃𝑚

where 𝜃𝑎 ⊥ 𝜃𝑚



Toy Example – Strategy 2

➔ Varying 𝜌 doesn’t impact the ATE that much

the association (which you don’t like *actually* 
have) does not inform 𝜌

In other words, 𝜌 doesn’t “learn” from missing data



Takeaways

• According to Ding and Li (2018) we still need to find like a 
“Frequentist”-like prior

• Future Bayesian Research: find better priors duh

• Cindy’s Hot Take: find something better to do with your life than this 
(don’t tell Dr. Banerjee) 
• But if you were to do it, do a sensitivity analysis for associational parameters 

(𝜌)
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