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Data Set-Up

Individual (i) Potential Outcomes Actual Treatment Observed (%utcome
- obs
720 K=o e Yi

1 66 2 0 66

2 0 ? 0 0

3 0 ? 0 0

4 ? 0 1 0

5 ? 607/ 1 607

6 ? 436 1 436

Objective: we are interested in estimating ? or Y™$



Bayes 101 (Missing Data’s Version)

Pr(AnB) Pr(B|A)Pr(A)
Pr(B) _ Pr(B)
Drop P(B) since it’s a normalizing constant
Pr(A|B) «< Pr(B|A) X Pr(A)
S

Pr(A|B) =

Posterior Likelihood Prior
the quantity Updates the We *aSsUmE*
we want Prior this

Let ‘U denote the Unknowns and K denote the Knowns:

Pr(U|K) < Pr(¥|U) x Pr(U)



Bayes 101 (Missing Data Version)

We write U = Y™ and € = Y°PS, W, X, 6 where X is a covariate matrix and 6 is a model parameter that governs
some said distribution. Then we rewrite our problem as:

y Pr(y™is|y°bs w, x,0) « Pr(Y(0),Y(1),W,X,6)

o< | | PrOwiY0), %i(1), X,,0) - Pr¥i(0), Yi (D] X, 6) - PreX;le)

=1

This is kinda complicated tho... so let's introduce....




Bayes 101 (Missing Data Version)

We write U = Y™ and € = Y°PS, W, X, 6 where X is a covariate matrix and 6 is a model parameter that governs
some said distribution. Then we rewrite our problem as:

y Pr(y™is|y°bs w, x,0) « Pr(Y(0),Y(1),W,X,6)

o< | | PrOwiY0), %i(1), X,,0) - Pr¥i(0), Yi (D] X, 6) - PreX;le)

=1

Unconfoundedness (W; L (¥;(0),Y;(1))|X;) allows us to drop
Pr(W;]Y;(0),Y;(1),X;,6) and Pr(X;|0)

o [Tiw,=0 Pr(Y;(DIY;(0), X;, 6) [1;.w,=1 Pr(¥;:(0)]Y;(1), X;, 6)



Toy Example

*SUPPOSE* (Y;(0), Y;(1)) has the following joint distribution:

O

2
; pPOyO
(?ES%) ~ N(u,2) where u = (o, 1) and X = <p6 i 002 1)
oY1 1

We observe Y.°?S = W;Y;(1) + (1 — W,)Y;(0) so some of the Y;(0)’s and Y;(1) ‘s are
observed.

In this example, we want to find 8 = (uy, Uy, 04, 05, p) and subsequently capture the
true Average Treatment Effect (ATE) for the finite population setting:

1 N
FP __ ) — V.
TFP = Eizlylu) Y,(0)
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Toy Example — Some Issues

We never observe
(Y;(0), Y;(1)) jointly, which
raises concerns about
whether p is identifiable

*SUPPOSE* (Y;(0), Y;(1)) has the following joint distribution:

| ol o
(QE(B) ~ N(u, 2) where p = (ug, 1) and X' = bo ®702 '

001 01

We observe Y°?S = W;Y;(1) + (1 — W;)Y;(0) so some of the ¥;(0)’s and Y;(1) ‘s are
observed.



Toy Example - Identifiability

* Frequentists: A parameter 0 is identifiable if
0= f(¥")
* Bayesians:

There is a thing
called "weakly” or

“partially
identifiable" -
Gustafson (2015) No real
" ' consensus -
They"J .t Bayesians
are

Lindley
(2015)
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Toy Example — Some Issues

*SUPPOSE* (Y;(0), Y;(1)) has the following joint distribution:

2
. 0} OO
(283) ~ N(u, 2) where pu = (go, 1) and X' = <p000 ,0002 1)
oY1 1

We observe Y°?S = W;Y;(1) + (1 — W,)Y;(0) so some of the Y;(0)’s and Y;(1) ‘s are
observed.

Strategy 2: Separate 6 = (0%,0™) where 8™ = (uy, Uy, 0y, 1) and 6% = p. Now our posterior
becomes:

Pr(Y™is|y°bs w, X, 0) « Pr(6%)Pr(6™) Pr(Y;(D1Y;(0), X;,06™) Pr(Y;(0)|Y;(1), X;, 06™)
l':JV]/iJ:Ll i:VV#O

where ¢ 1 g™




Toy Example — Strategy 2

ATE (posterior 95% CI)

2.3

2.2

21

2.0

1.9

assumed rho

0.6 0.9

=>» Varying p doesn’t impact the ATE that much

the association (which you don’t like *actually*
have) does not inform p

In other words, p doesn’t “learn” from missing data



Takeaways

e According to Ding and Li (2018) we still need to find like a
“Frequentist”-like prior

* Future Bayesian Research: find better priors duh

e Cindy’s Hot Take: find something better to do with your life than this
(don’t tell Dr. Banerjee)

e But if you were to do it, do a sensitivity analysis for associational parameters
(p)
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