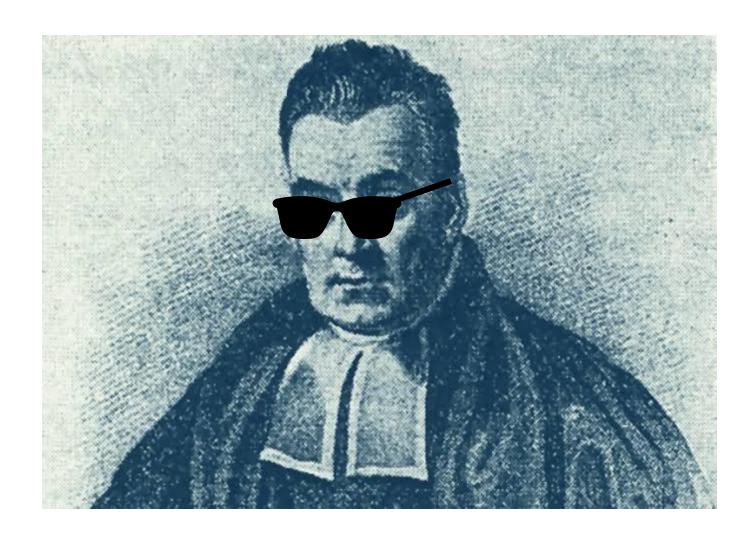
Causal Inference as a Missing Data Problem

(Bayes' Version)

Cindy J. Pang

Casual Inference Journal Club – November 12, 2025



Data Set-Up

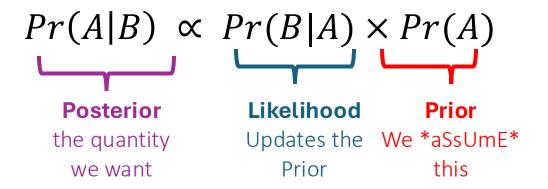
Individual (i)	Potential Outcomes		Actual Treatment	Observed Outcome
	$Y_i(0)$	$Y_i(1)$	$W_i = egin{cases} 1 & if & treated \ 0 & if & control \end{cases}$	Y_i^{obs}
1	66	,	0	66
2	0	5	0	0
3	0	?	0	0
4	?	0	1	0
5	?	607	1	607
6	?	436	1	436

Objective: we are interested in estimating? or Y^{mis}

Bayes 101 (Missing Data's Version)

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{Pr(B|A)Pr(A)}{Pr(B)}$$

Drop P(B) since it's a normalizing constant



Let ${m u}$ denote the Unknowns and ${m {\mathcal K}}$ denote the Knowns:

$$Pr(\mathcal{U}|\mathcal{K}) \propto Pr(\mathcal{K}|\mathcal{U}) \times Pr(\mathcal{U})$$

Bayes 101 (Missing Data Version)

We write $\mathcal{U}=Y^{mis}$ and $\mathcal{K}=Y^{obs},W,X,\theta$ where X is a covariate matrix and θ is a model parameter that governs some said distribution. Then we rewrite our problem as:

$$Pr(\mathbf{Y}^{\text{mis}}|\mathbf{Y}^{\text{obs}},\mathbf{W},\mathbf{X},\theta) \propto Pr(\mathbf{Y}(0),\mathbf{Y}(1),\mathbf{W},\mathbf{X},\theta)$$

$$\propto \prod_{i=1}^{N} Pr(W_i|Y_i(0),Y_i(1),X_i,\theta) \cdot Pr(Y_i(0),Y_i(1)|X_i,\theta) \cdot Pr(X_i|\theta)$$

This is kinda complicated tho... so let's introduce....

Bayes 101 (Missing Data Version)

We write $\mathcal{U}=Y^{mis}$ and $\mathcal{K}=Y^{obs},W,X,\theta$ where X is a covariate matrix and θ is a model parameter that governs some said distribution. Then we rewrite our problem as:

$$Pr(\mathbf{Y}^{\text{mis}}|\mathbf{Y}^{\text{obs}},\mathbf{W},\mathbf{X},\theta) \propto Pr(\mathbf{Y}(0),\mathbf{Y}(1),\mathbf{W},\mathbf{X},\theta)$$

$$\propto \prod_{i=1}^{N} Pr(W_i|Y_i(0),Y_i(1),X_i,\theta) \cdot Pr(Y_i(0),Y_i(1)|X_i,\theta) \cdot Pr(X_i|\theta)$$

Unconfoundedness $(W_i \perp (Y_i(0), Y_i(1))|X_i)$ allows us to drop $Pr(W_i|Y_i(0), Y_i(1), X_i, \theta)$ and $Pr(X_i|\theta)$

$$\propto \prod_{i:W_i=0} Pr(Y_i(1)|Y_i(0), X_i, \theta) \prod_{i:W_i=1} Pr(Y_i(0)|Y_i(1), X_i, \theta)$$

Toy Example

SUPPOSE $(Y_i(0), Y_i(1))$ has the following joint distribution:

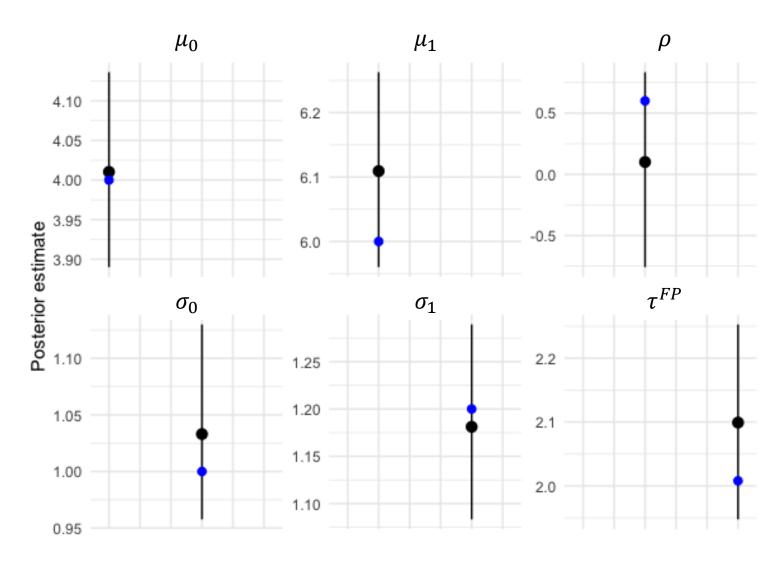
$$\begin{pmatrix} Y_i(0) \\ Y_i(1) \end{pmatrix} \sim N(\mu, \Sigma) \text{ where } \mu = (\mu_0, \mu_1) \text{ and } \Sigma = \begin{pmatrix} \sigma_0^2 & \rho \sigma_0 \sigma_1 \\ \rho \sigma_0 \sigma_1 & \sigma_1^2 \end{pmatrix}$$

We observe $Y_i^{obs} = W_i Y_i(1) + (1 - W_i) Y_i(0)$ so some of the $Y_i(0)$'s and $Y_i(1)$'s are observed.

In this example, we want to find $\theta = (\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$ and subsequently capture the true Average Treatment Effect (ATE) for the finite population setting:

$$\tau^{FP} = \frac{1}{N} \sum_{i=1}^{N} Y_i(1) - Y_i(0)$$

Toy Example



Toy Example – Some Issues

We never observe $(Y_i(0), Y_i(1))$ jointly, which raises concerns about whether ρ is **identifiable**

SUPPOSE $(Y_i(0), Y_i(1))$ has the following joint distribution:

$$\binom{Y_i(0)}{Y_i(1)} \sim N(\mu, \Sigma)$$
 where $\mu = (\mu_0, \mu_1)$ and $\Sigma = \begin{pmatrix} \sigma_0^2 & \wp \sigma_0 \sigma_1 \\ \wp \sigma_0 \sigma_1 & \sigma_1^2 \end{pmatrix}$

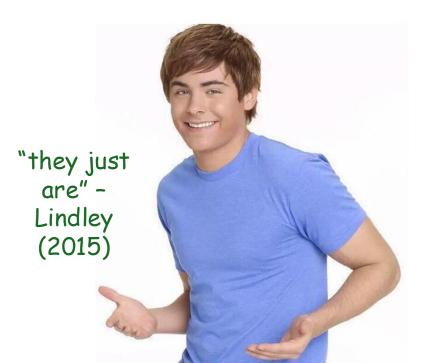
We observe $Y_i^{obs} = W_i Y_i(1) + (1 - W_i) Y_i(0)$ so some of the $Y_i(0)$'s and $Y_i(1)$'s are observed.

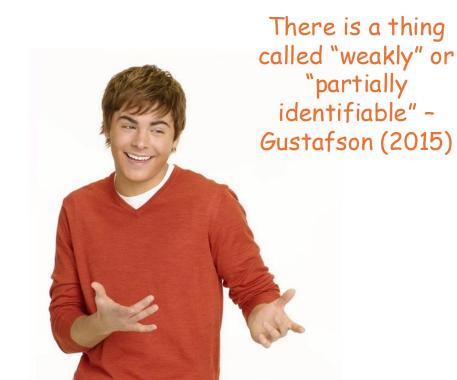
Toy Example – Identifiability

• **Frequentists:** A parameter θ is identifiable if

$$\theta \coloneqq f(Y_i^{obs})$$

Bayesians:





Toy Example – Some Issues

SUPPOSE $(Y_i(0), Y_i(1))$ has the following joint distribution:

$$\begin{pmatrix} Y_i(0) \\ Y_i(1) \end{pmatrix} \sim N(\mu, \Sigma) \text{ where } \mu = (\mu_0, \mu_1) \text{ and } \Sigma = \begin{pmatrix} \sigma_0^2 & \rho \sigma_0 \sigma_1 \\ \rho \sigma_0 \sigma_1 & \sigma_1^2 \end{pmatrix}$$

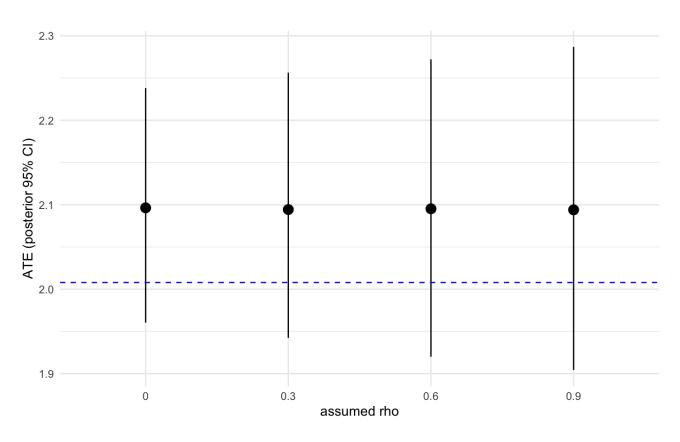
We observe $Y_i^{obs} = W_i Y_i(1) + (1 - W_i) Y_i(0)$ so some of the $Y_i(0)$'s and $Y_i(1)$'s are observed.

Strategy 2: Separate $\theta = (\theta^a, \theta^m)$ where $\theta^m = (\mu_1, \mu_2, \sigma_0, \sigma_1)$ and $\theta^a = \rho$. Now our posterior becomes:

$$Pr(\mathbf{Y}^{\text{mis}}|\mathbf{Y}^{\text{obs}},\mathbf{W},\mathbf{X},\theta) \propto Pr(\theta^a)Pr(\theta^m) \prod_{i:W_i=1} Pr(Y_i(1)|Y_i(0),X_i,\theta^m) \prod_{i:W_i=0} Pr(Y_i(0)|Y_i(1),X_i,\theta^m)$$

where $\theta^a \perp \theta^m$

Toy Example – Strategy 2



ightharpoonup Varying ho doesn't impact the ATE that much

the association (which you don't like *actually* have) does not inform ρ

In other words, ρ doesn't "learn" from missing data

Takeaways

- According to Ding and Li (2018) we still need to find like a "Frequentist"-like prior
- Future Bayesian Research: find better priors duh
- Cindy's Hot Take: find something better to do with your life than this (don't tell Dr. Banerjee)
 - But if you were to do it, do a sensitivity analysis for associational parameters (
 ho)